The University of New South Wales

AVE Blois 2016

Développements récents dans l'analyse cepstrale appliquée à la mécanique

Professeur Emeritus Robert B. Randall School of Mechanical and Manufacturing Engineering The University of New South Wales Sydney 2052, Australie

The University of New South Wales			AVE Blois 2016				
PAPIER ORIGINAL SUR LE CEPSTRE							
Bogert, Healy and Tukey (1963) "The Quefrency Alanysis of Time Series For Echoes; Cepstrum, Pseudo-autcovariance, Cross-cepstrum and Saphe Cracking". Proc. Symp. On Time Series Analysis, Wiley.							
Le cepstre defini comme "le spectre de puissance du logarithme du spectre de puissance" – utilisé pour detecter le temps de delai d'un echo dans un signal seismique (mieux que la fonction d'autocorrélation)							
Nouveau langage du Cepstre (en anglais)							
SPECtrum	\rightarrow	CEPStrum					
FREQUency	\rightarrow	QUEFRency					
HARmonic	\rightarrow	RAHmonic					
FILter	\rightarrow	LIFter					
MAGnitude	\rightarrow	GAMnitude					
PHASe	\rightarrow	SAPHe					
RADius	\rightarrow	DARius					
DEMODulation	\rightarrow	DEDOMulation					

The University of New South Wales

AVE Blois 2016

Contexte de la définition originale

Co-auteur Tukey était également l'un des deux auteurs de l'algorithme de FFT, mais deux ans plus tard (1965). La définition originale du cepstre comme le «spectre de puissance du logarithme d'un spectre de puissance» vient apparemment du fait que logiciel simple n'était pas facilement disponible pour la transformation de Fourier complexe, même à peine deux ans avant la publication de la FFT. Cela signifie que « liftrage » a été réalisé par filtrage convolutif du spectre logarithmique, plutôt que par fenêtrage dans le cepstre

Extrait de l'article original:

"Bien que les techniques spectrales, impliquant des opérations du deuxième degré, sont maintenant tout à fait familier, les techniques de Fourier au premier degré, apparemment simples, sont moins bien connues". Ce fut apparemment écrit par Tukey lui-même, comme référence est immédiatement faite à un papier dont il est seul auteur

Peu de temps après la publication de la FFT, le cepstre a été redéfini comme «transformée de Fourier inverse du logarithme du spectre de puissance" qui était réversible au spectre de puissance après "liftrage" dans le cepstre

The University of New South Wales	AVE Blois	2016
CEPSTRUM DEFINITIONS		
The original definition of the (power) cepstrum was:		
$C_p(\tau) = \left \Im \left\{ \log \left(F_{xx}(f) \right) \right\} \right ^2$	(1)	
where $F_{xx}(f)$ is a power spectrum, which can be an averaged spectrum or the amplitude squared spectrum of a single reco	d power ord.	
The definition of the complex cepstrum is:		
$C_{c}(\tau) = \mathfrak{T}^{-1}\left\{\log\left(F(f)\right)\right\} = \mathfrak{T}^{-1}\left\{\ln\left(A(f)\right) + j\phi(f)\right\}$	(2)	
where $F(f) = \Im \{ f(t) \} = A(f)e^{j\phi(f)}$	(3)	
in terms of the amplitude and phase of the spectrum.		

The Un New So	iversity of outh Wales	AVE Blois 2016
	CEPSTRUM DEFINITIONS	
	The new power cepstrum is given by:	
	$C_p(\tau) = \mathfrak{I}^{-1} \Big\{ \log \big(F_{xx}(f) \big) \Big\}$	(4)
	which for the spectrum of a single record (as in (3)) can b as:	e expressed
	$C_p(\tau) = \Im^{-1} \left\{ 2 \ln \left(A(f) \right) \right\}$	(5)
	The so-called real cepstrum is obtained by setting the pl in Eq. (2):	hase to zero
	$C_r(\tau) = \Im^{-1} \left\{ \ln \left(A(f) \right) \right\}$	(6)
	which is seen to be simply a scaled version of (5) .	

8

15

New South Wales
MAC co (left) v
Doce 1, 1, 4, 407 0, 3, 356 0, 4, 3, 576 0, 5, 4, 12 1, 5, 4, 12

The University of New South Wales

AVE Blois 2016

OMA IN THE PRESENCE OF VARIABLE SPEED HARMONIC ORDERS

Compared with the previous example of OMA on a helicopter in steady flight, if the order related components are varying in speed they can no longer be removed using TSA. Two other approaches are compared here.

Gearbox casing excited by a shaker signal with 22 orders of a "shaft speed" with a mean of 76 Hz, but varying around this by $\pm 15\%$, with a modulating frequency of 2 Hz (0.5s period). This was to simulate a varying speed gearbox. The intention was to carry out OMA on the casing from the response signals only, but the shaker force was measured so as to compare with EMA

Two methods were tried:

1) Exponential lifter on cepstrum of time signal

2) Transform to order domain, remove harmonics with notch lifter and transform back to time domain

	The University of New South Wales	AVE Blois 2016
	CONCLUSION	
•	Le cepstre révèle la structure périodique dans un spectre (les harmoniques, les bandes latérales et les échos	log), y compris
•	Les effets de la fonction d'excitation et de transfert sont au cepstre pour une seule entrée - application à l'analyse mou (opérationnelle)	lditifs dans le lale
•	Signaux temporels peuvent être modifiés (par exemple sup échos) en utilisant le cepstre complexe, mais seulement lo peut être déroulée	pression des rsque la phase
•	Les signaux de réponse stationnaires peuvent maintenant utilisant le cepstre réel au lieu du cepstre complexe	être édités en
•	De nouvelles méthodes de liftrage cepstral suppriment les parasites, tels que des fréquences discrètes - utiles dans l	composants 'AMO
•	Un « liftre » exponentiel supprime en aveugle de nombreus perturbations, tout en se concentrant les informations mod quéfrence	ses dales à basse
•	Pour le diagnostic des engrenages, les effets modaux devi supprimés pour la vitesse variable, le contraire pour les ro	raient être ulements