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Abstract 

In this paper we present the 𝐻∞  estimator for discrete-time varying linear system combined with the 
polynomial approximation for order tracking of non-stationary signals. The proposed approach is applied 
to the gearbox diagnosis under variable speed condition. In this instance, it is well known that the 
occurrence of a fault on a gear tooth leads to the modulation of amplitude and phase of vibration signal 
orders. Our purpose is to estimate this unknown amplitude and phase modulation by tracking orders. In 
order to estimate these modulation signals, we model the vibration signal by using state variables. Then, 

we use the 𝐻∞ criterion to minimize the worst possible amplification of the estimation error related to 
both the process and measurement noises. Such an approach doesn’t require any assumption on the 
statistic properties of the noises unlike to the Kalman estimator. A numerical example is given in order 

to evaluate the performance of the  𝐻∞  estimator regarding the conventional Kalman estimator. 
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1 Introduction 

Order tracking using the state space approach is one of the tools widespread for the processing of 
non-stationary signals. The so-called the state space model is composed of two equation: the state 
equation and the measurement equation. The technique the most presented in this area is the Kalman 
estimator and more precisely the Vold_kalman estimator in the area of the mechanical systems 
diagnosis [1]. Vold et al. present the theoretical basis about this estimator in [2]. This kind of estimator 
suppose that the measurement noise and the process noise are centred, Gaussian and white with 
known statistics.  

We can find in the literature many works on the Vold_kalman estimator for order tracking. M. Pan 
and Y. Lin have realized an interesting explorative study on the Vold_kalman estimator [3-4]. Behrouz 
and al. also applied this estimator to diagnose a bearing default and they have translated the state 
equation in term of second order autoregressive model [5]. These study have provided conclusive 
results. However, the unrealistic assumptions on the noises naturally limit the application of this 
estimator in real cases. 

Therefore, we introduce in this paper the 𝐻∞ estimator to evaluate the modulation of amplitude and 
phase of the orders. To track these modulation we first model the vibration signal using the state 
variables. Then these latter are modelled by a Taylor series. This method generalize that of 
Vold_kalman. With the 𝐻∞ estimator we make no assumption on the noise statistics. But we assume 
only that the noises have finite energy. We find in the work of Shen and Deng [6] an introduction on the 
discrete 𝐻∞ estimator. 

This paper is structured as follow: section 2 presents the theoretical foundation about the 𝐻∞ 
estimator and section 3 provides an example of simulation which validated our proposal. 
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2 Theoretical background 

2.1 Problem formulation 

The measurement signal we consider in this paper is modelled as  
 

𝑦(t) = ∑ 𝐴𝑖(t) cos (2𝜋 ∫ 𝑓𝑖(𝑢)𝑑𝑢
𝑡

0
+ 𝜙𝑖(𝑡))𝑀

𝑖=1 + 𝑣(𝑡)   (eq. 1) 
 

Where 𝐴𝑖 and 𝜙𝑖 are respectively the amplitude and the phase of the 𝑖𝑡ℎ order, 𝑣 is the measurement 
noise which contains the unwanted part of the signal, 𝑓𝑖 = 𝑜𝑖𝑓𝑟 is the instantaneous frequency of the 
order of interest with 𝑓𝑟 the reference frequency and 𝑜𝑖 the value of the order 𝑖. 

In the discrete form, (eq. 1) becomes: 
 

𝑦(𝑘) = ∑ 𝐴𝑖(𝑘) cos(𝜃𝑖(𝑘) + 𝜙𝑖(𝑘))𝑀
𝑖=1 + 𝑣(𝑘)  (eq. 2) 

 

𝑘 = 0,2, ⋯ , 𝑛 − 1.  

Where 𝜃𝑖(𝑘) = 2𝜋 ∑
𝑓𝑖(𝑗)

𝑓𝑠

𝑘
𝑗=1  is the angular displacement and 𝑓𝑠 is the sampling frequency. 

Our objective is to estimate the amplitude and the phase of some specific orders of interest using 
the  𝐻∞ estimation approach. For this, we formulate the problem in term of estimation of the state 
variables. And we must keep in mind that these amplitude and phase are features of the fault on the 
gear teeth.  

2.2 State space modelling 

Let us consider the formula established in the (eq. 2).The purpose here is to build the measurement 
and the state equation. 

Linearizing the (eq. 2) we get: 
 

𝑦(𝑘) = ∑ [cos (𝜃𝑖(𝑘)) −sin (𝜃𝑖(𝑘))] [
𝑎𝑖,𝑐(𝑘)

𝑎𝑖,𝑠(𝑘)
]𝑀

𝑖=1 + 𝑣(𝑘) (eq. 3) 

 

Where 𝑎𝑖,𝑐 = 𝐴𝑖𝑐𝑜𝑠𝜙𝑖 and 𝑎𝑖,𝑠 = 𝐴𝑖𝑠𝑖𝑛𝜙𝑖. Let put 𝑎𝑖(𝑘) = [
𝑎𝑖,𝑐(𝑘)

𝑎𝑖,𝑠(𝑘)
] and 

 𝐵𝑖(𝑘) = [cos (𝜃𝑖(𝑘)) −sin (𝜃𝑖(𝑘))]. 
The amplitudes 𝑎𝑖,𝑐  and  𝑎𝑖,𝑠 are unknown. For estimating them we model these amplitudes by a 

polynomial approximation as follows:  
 

𝑎𝑖,𝑐(𝑘) = ∑ 𝛼𝑖,𝑐
𝑞 (𝑘)𝑡𝑞(𝑘)𝑁

𝑞=0     (eq. 4) 
 

𝑎𝑖,𝑠(𝑘) = ∑ 𝛼𝑖,𝑠
𝑞 (𝑘)𝑡𝑞(𝑘)𝑁

𝑞=0 , 𝑖 = 1,2, … , 𝑀   (eq. 5) 
 

and the coefficients of the polynomial by a random walk process such as: 
 

𝛼𝑖,𝑐
𝑞 (𝑘 + 1) = 𝛼𝑖,𝑐

𝑞 (𝑘) + 𝑤𝑖,𝑐(𝑘)  (eq. 6) 
 

𝛼𝑖,𝑠
𝑞 (𝑘 + 1) = 𝛼𝑖,𝑠

𝑞 (𝑘) + 𝑤𝑖,𝑠(𝑘)  (eq. 7) 
 

where 𝑤𝑖,. is a random signal. With those new variables (eq. 3) can be rewritten as:  
 

𝑦(𝑘) = 𝑇(𝑘)𝐵(𝑘)𝑥(𝑘) + 𝑣(𝑘)    (eq. 8)   
 

With (𝑘) = [1 𝑡(𝑘) ⋯ 𝑡𝑁(𝑘)] , 𝐵(𝑘) = [𝐵1(𝑘) 𝐵2(𝑘) ⋯ 𝐵𝑀(𝑘)] and  

𝑥(𝑘) = [𝑥1(𝑘) 𝑥2(𝑘) ⋯ 𝑥𝑀(𝑘)]𝑇 such as 𝑥𝑖(𝑘) = [
𝑥𝑖,𝑐

𝑥𝑖,𝑠
]  with 𝑥𝑖,. = [𝛼𝑖,.

0 𝛼𝑖,.
1 ⋯ 𝛼𝑖,.

𝑁]
𝑇
. 

Note that 𝐴𝑇 is the transpose of the matrix 𝐴. 
Assuming that the measurement matrix is 𝐻(𝑘) = 𝑇(𝑘)𝐵(𝑘), we finally obtain the measurement 

equation just below: 
 

𝑦(𝑘) = 𝐻(𝑘)𝑥(𝑘) + 𝑣(𝑘)  (eq. 9) 
 

Where 𝑣 is the measurement noise with a covariance matrix 𝑉. 
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Then the state equation are: 
 

𝑥(𝑘 + 1) = 𝐹𝑥(𝑘) + 𝑤(𝑘)    (eq. 10) 
 

Where 𝐹 = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] and 𝑤(𝑘) = [𝑤1,𝑐 𝑤1,𝑠 𝑤2,𝑐 𝑤2,𝑠 ⋯ ⋯ 𝑤𝑀,𝑐 𝑤𝑀,𝑠]𝑇 is the process 

noise with a covariance matrix 𝑊. 

2.3 Discrete 𝑯∞ estimator design 

From the (eq. 9) and (eq. 10) we get the following state space model: 
 

{
𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐵𝑤𝑘

𝑦𝑘+1 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘
                                                                                                  (eq. 11) 

 
 

Let us note 𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 the estimation error where �̂�𝑘 is the estimate of 𝑥𝑘 and 𝐸{. } will stand for 
the expectation value. 

Several facts may be used against the Kalman estimator although it is an attractive and powerful tool 
to estimate 𝑥𝑘: 

1. The Kalman estimator minimizes 𝐸{𝑒𝑘𝑒𝑘
𝑇} while the user may be interested in minimizing the 

worst-case error. 
2. The Kalman estimator assumes that the noises are zero-mean with Gaussian distribution. 

3. The Kalman estimator assumes also that 𝐸{𝑣𝑘𝑣𝑘
𝑇} and 𝐸{𝑤𝑘𝑤𝑘

𝑇} are known. 

These limitations have led to the statement of the 𝐻∞ estimation problem. Several formulations exist 

in the literature. The 𝐻∞ estimator solution that we present here is originally developed by Ravi Banar 
[7] and further explored by Shen and Deng [6]. These pioneer define the following cost function: 

 

𝐽 =
∑ ‖𝑥𝑘−𝑥𝑘‖𝑄

2𝑛−1
𝑘=0

‖𝑥0−𝑥0‖
𝑝0

−1
2 +∑ (‖𝑤𝑘‖

𝑊−1
2 +‖𝑣𝑘‖

𝑉−1
2 )𝑛−1

𝑘=0

         (eq. 12) 

 

Where �̂�0 is an estimate of 𝑥0, 𝑄 > 0, 𝑃0 > 0, 𝑊 > 0 and 𝑉 > 0 are the weighting matrices and are 

left to the choice of the designers and depend on the performance requirements. The notation ‖𝑥𝑘‖𝑄
2  

defines the weighted 𝑄 − 𝐿2 norm, i.e, ‖𝑥𝑘‖𝑄
2 = 𝑥𝑘

𝑇𝑄𝑥𝑘. 

Problem statement [8]: Given the scalar 𝛾 > 0, find estimation strategy that achieve  
 

sup 𝐽 < 1/𝛾  (eq. 13) 
 

Where “𝑠𝑢𝑝” is the supremum value and 𝛾 is the desired level of noise attenuation. 

The 𝐻∞ estimation problem consists on the minimization of the worst possible amplification of the 
estimation error. This can be interpreted as a “minmax” problem since we are searching to minimize the 
estimation error and to maximize the exogenous disturbances (𝑤𝑘 and 𝑣𝑘) and the error of initialization 

(𝑥0 − �̂�0). 

Remember that unlike the Wiener/Kalman estimator, the 𝐻∞ estimator deals with deterministic noises 
and no a priori information on their statistic properties are required. The solution of the 𝐻∞ estimation 
problem is given in the theorem below from [6]. 

Theorem: Let 𝛾 > 0 be a prescribed level of noise attenuation. Then, there exists a 𝐻∞ estimator for 

𝑥𝑘 if and only if there exists a stabilizing symmetric solution 𝑃𝑘 > 0 to the following discrete-time Riccati 
equation: 

 

𝑃𝑘+1 = 𝐹𝑃𝑘(𝐼 − 𝛾𝑄𝑃𝑘 + 𝐻𝑘
𝑇𝑉−1𝐻𝑘𝑃𝑘)−1𝐹𝑇 + B𝑊𝐵𝑇 (eq. 14) 

 

Then the 𝐻∞ estimator gives the estimate �̂�𝑘 of 𝑥𝑘 such as: 
 

�̂�𝑘+1 = 𝐹�̂�𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�𝑘), �̂�0 = 𝑥0  (eq. 15) 
 

𝐾𝑘 is the gain of the 𝐻∞ estimator and is given by: 
  

𝐾𝑘 = 𝐹𝑃𝑘(𝐼 − 𝛾𝑄𝑃𝑘 + 𝐻𝑘
𝑇𝑉−1𝐻𝑘𝑃𝑘)−1𝐻𝑘

𝑇𝑉−1  (eq. 16) 
 



5ième Colloque “Analyse vibratoire Expérimentale” Blois, 15 - 17 Novembre 2016 

 

 4 

 

Another way to solve the Riccati equation (eq. 14) is presented by Yaesh and Shaked [9]. The 
method is given as follows: 

1. Form the Hamiltonian 
 

𝑍 = [
𝐹−𝑇 𝐹−𝑇[𝐻𝑇𝑅−1𝐻 − 𝛾𝐼]

𝐵𝑄𝐵𝑇𝐹−𝑇 𝐹 + 𝐵𝑄𝐵𝑇𝐹−𝑇[𝐻𝑇𝑅−1𝐻 − 𝛾𝐼]
] ∈ ℝ2𝑛∗2𝑛 (eq. 17) 

 

Where 𝑛 is 𝑥 dimension. 

2. Find the eigenvectors of 𝑍 corresponding to the eigenvalues ℰ𝑖(𝑖 = 1, ⋯ , 𝑛)  outside the unit 
circle 

3. Form the matrix of the corresponding eigenvectors denoted by 
 

(ℰ1 ℰ2   ⋯  ℰ𝑛) ≡ [
𝒳1

𝒳2
]  (eq.18) 

 

Where 𝒳1, 𝒳2  ∈  ℝ𝑛∗𝑛. 

4. Compute 𝑃 = 𝒳2𝒳1
−1 . 

Note that more 𝛾 gets smaller, more the problem is easier to solve. When 𝛾 tends to 𝛾𝑜𝑝𝑡 (the optimal 

value of 𝛾) the eigenvalues of 𝑃 tend to infinity and therefore 𝒳1 is close to a singular matrix. Shaked 
and Theodor [10] investigate the behaviour of the optimal 𝐻∞ estimator when 𝛾 tends to 𝛾𝑜𝑝𝑡. They 

showed that when we are close to the optimum value for 𝛾, there exists at least one or more unbounded  
eigenvalues.   

In the special case, where 𝛾 → 0, the 𝐻∞ estimator reduces to a Kalman estimator. 

3 Numerical implementation 

In this section, we use an example to illustrate the performances of 𝐻∞ estimation approach. The 
generated signal (see Fig. 1) is described by the following equation.  

 

𝑦(𝑡) = ∑ 𝐴𝑖(𝑡)cos (2𝜋𝑜𝑖 ∫ 𝑓𝑟(𝑢)𝑑𝑢
𝑡

0
)3

𝑖=1 + 𝑣(𝑡)  (eq. 19) 
 

Where 𝑓𝑟 is the instantaneous frequency linearly increasing from 0 to 50 𝐻𝑧 in 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑒𝑠, 𝑜𝑖 contains 

the order’s number and 𝑣 is the measurement noise. 
The signal is composed of three orders presented in the table 1. Figure 2 displays the rpm-frequency 

spectrum using the conventional windowing Fourier transform that characterizes three orders.  
  
 

Order number 1 4 9 

Amplitude 
Linearly increasing 
From 0 to 10 

Linearly increasing  
From 3 to 13 

Fixed at 10 

 

Tab.  1. The synthetic signal’s amplitude of orders 
 

 
 

 

Fig.  1. Synthetic signal 
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Fig.  2. Illustration of rpm-frequency spectrum 
 

The results presented below have been got using a Monte-Carlo simulation based on 400 iterations. 
The parameters of the estimator have been taken as follows:  

 the covariance of the process noise 𝑊 = 10−9,  

 the covariance of the measurement noise 𝑉 = 10−3,  

 the initial covariance error 𝑃0 = 10−3,  

 the level of the noise attenuation 𝛾 = 𝛾𝑜𝑝𝑡 = 100.178. 

 𝛾𝑜𝑝𝑡  is equal to 𝛾 to the greatest value that guarantees the stability of the matrix 𝑃. This stability is 

reached, according to Yaesh and Shaked [9], when the 𝑃’s eigenvalues are bounded in the unit circle. 

As plotted in the figure 3, we achieve this stability for 𝛾 = 100.178 . Beyond this value there exists at least 
one or more eigenvalues that are outside the unit circle.   

The measurement noise is modelled by a noise of Poisson as mentioned in [11].The Kalman 
estimator algorithm presented by Dan Simon [12] and the 𝐻∞ estimator have been applied to the 
generated vibration signal. The performance of both estimators is measured in term of signal to noise 
ratio. The table 2 gives the performance got for the two estimators. In both cases the 𝐻∞ estimator 

provides a better result than the Kalman estimator. The 𝑆𝑁𝑅𝑜𝑢𝑡   value is the signal to noise ratio 
calculated by 

 

𝑆𝑁𝑅𝑜𝑢𝑡 = 10 ∗ log10
∑ 𝑦𝑘

2𝑁
𝑘=1

∑ (𝑦𝑘−�̂�𝑘)^2𝑁
𝑘=1

       (eq. 18)  
 

Where 𝑁 is the number of samples, 𝑦𝑘 is the noiseless signal at times 𝑘 and �̂�𝑘 is the estimated or 
filtered signal. The criterion of comparison is improved by about 0.7 𝑑𝐵 using the 𝐻∞ estimator. 

Therefore the 𝐻∞ estimator is a good alternative to deal with real situation where the noises are not 
really Gaussian.  

 
 

 
 
 
 
 
 
 
 
 

 

Tab.  2. Performance comparison between Kalman and 𝐻∞ filtering 

 
 

𝑆𝑁𝑅𝑖𝑛 Estimation algorithm 
𝑆𝑁𝑅𝑜𝑢𝑡 

White Gaussian noise Poisson noise 

5 𝑑𝐵 
Kalman 

𝐻∞ 
29.9771 

30.7015 

23.3424 

23.7324 

10 𝑑𝐵 
Kalman 

𝐻∞ 
39.9468 
40.6510 

33.2658 
33.8200 

15 𝑑𝐵 
Kalman 

𝐻∞ 
49.2331 

49.9383 

43.0675 

44.0972 
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Figure 4 to figure 6 show the effectiveness of the 𝐻∞ estimator for order tracking in non-stationary 

signal processing. We see in this last figure that the estimated we got by the 𝐻∞ estimation is more 
close to the original amplitude than the Kalman estimation. 
 

 

Fig.  3. Maximum of the eigenvalues of the covariance matrix error 
 

 
 

Fig.  4. Amplitude of order 1 estimated using the 𝐻∞ and the Kalman estimator 
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Fig.  5. Amplitude of order 2 estimated using the  𝐻∞ and the Kalman estimator 

 

 
 

Fig.  6. Amplitude of order 3 estimated using the 𝐻∞ and the Kalman estimator 

 

 

4 Conclusion 

Through this paper we developed a method to estimate order’s amplitude based on the 𝐻∞ estimation 
in non-stationary operations. This method uses the information about the instantaneous frequency of 
the signal and make no assumption on the noises statistics. It take advantage on the classical Kalman 
estimation and it can be consider as an extension of this last one. Since the estimator is designed to 
minimize the worst case-disturbances, the 𝐻∞ estimation approach is more robust to process any kind 
of noisy signal. The application of this method in real-life data will concern our future research. 
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